
Observability Patterns for Modern
Applications

Pedro J. Molina, PhD https://metadev.pro
Revision 2.0 Published in Seville, 2022.08.10

https://metadev.pro

Observability Patterns for Modern Applications

Metadev Whitepaper: Observability Patterns for Modern Applications.
© Metadev, Seville, Spain, EU. MMXXII.
All rights reserved.

Cover design & image: Paco Soria, 2022.
Produced with LATEX / MiKTEX and pdfTEX.

Designed to be read in digital media.
Consider it twice before printing, to save trees.

i

Observability Patterns for Modern Applications

About
Metadev S.L. is a company devoted to creating high quality software on the cloud. Metadev
helps its customers to improve processes, train technical staff, and recommend practices
for excellence in development and operation optimizing ROI on Software investments.
https://metadev.pro | info@metadev.pro

Authors

Pedro J. Molina, PhD
Metadev’s Founder

Pedro has more than 25 years of experience developing software and helping business
customers to maximize ROI on technology.

Linkedin: linkendin.com/in/pjmolina — Twitter: @pmolinam

Executive Summary
This document presents key technical patterns to expose application’s health, metrics, logs and KPIs
in a standardized way to allow aggregate reporting and quick decision making by stakeholders.

ii

https://metadev.pro
mailto://info@metadev.pro
https://linkendin.com/in/pjmolina
https://twitter.com/pmolinam

Observability Patterns for Modern Applications

Contents
1 Goal 2

2 Patterns & practices 2

2.1 Visible Version . 2

2.2 Ping/Heartbeat Endpoint . 3

2.3 Metrics Endpoint . 4

2.4 Status Page . 5

2.5 Health Endpoint . 6

2.6 Structured Log . 7

2.7 Centralized Log . 8

2.8 Application Instrumentation . 8

2.9 Configuration Management . 9

2.10 Central Configuration Management . 9

2.11 Audited Configuration Management . 10

References 11

1

Observability Patterns for Modern Applications

1 Goal
This whitepaper provides a set of condensed best practices distilled at Metadev when dealing with
Application Monitoring and operation in production with the goal of saving time and effort and reduce
overall downtime. We help customers to implement these practices to deploy and operate application
on scale with safety and security.

Expected audience: CTOs & Software Architects.

2 Patterns & practices
▶ Visible Version

▶ Ping / Heartbeat Endpoint

▶ Metrics Endpoint

▶ Status Page

▶ Health Endpoint

▶ Structured Log

▶ Centralized Log

▶ Application Instrumentation

▶ Configuration Management

▶ Central Configuration Management

▶ Audited Configuration Management

2.1 Visible Version
Application’s users should be able to know the exact version of the product they are using.

HOW

Showing in a prominent place of the UI (f.e. footer, welcome or about page) the version number. This
information will be useful for:

▶ Verify a deployment matches the expected version.

2

Observability Patterns for Modern Applications

▶ Discover/ensure versions on environments.

▶ Report bugs with the corresponding exact version where they were found.

WHEN TO USE IT

Always. It improves error reporting, triage and tracing.

2.2 Ping/Heartbeat Endpoint
Applicable in Web applications, services and long running
processes. It provides a specific endpoint f.e. GET /ping

in a way a client can verify if a service instance is available
or not responding.

HOW

For a call as follows:

curl https :// server/ping

The service will respond with:

200 OK

Content -Type: application/json

{ "message ": "pong" }

In case of failure, the client will receive a timeout or a network error. Ping service does not need
securitization (no credentials needed). However, can be constrained to respond to specific internal
IPs if confronted with Denial-of-Service attacks.

WHEN TO USE IT

In services needing been monitored to verify availability and correct operation (almost all of them).
Scalable services behind a load balancer, in containers or Kubernetes. This ping or heartbeat service
allows a load balancer like nginx [9] or ha-proxy [2] to route workload to different nodes dynamically
depending on latency observed in each node. Tools like Consul [6] or Nagios [14] allows to periodically
monitor service instances.

3

Observability Patterns for Modern Applications

2.3 Metrics Endpoint
A dedicated metric endpoint allows to know about the performance indicators of the service. A
third-party system can query services to collect and centralize technical and business metrics. This
information can be stored, aggregated and visualized in real time, also used as a alert triggers. Tooling
like Prometheus [3], InfluxDB [12], or Graphana [13] allows to aggregate monitoring information, define
business dashboards and trigger alerts as needed.

HOW

In a call similar to this one (note the service provides API-Key authentication):

curl https :// server :443/ metrics -H "apikey=ab39z3d893"

The service will respond (example using Prometheus Metrics format):

200 OK

Content -Type: text/plain; charset=utf -8

customers_enrolled 238

completed_courses 345

api_calls_counter{code="200"} 23456

api_calls_counter{code="404"} 132

load_average_1min_gauge 6.037109375

load_average_5min_gauge 8.2421875

load_average_15min_gauge 8.8232421875

memory_used_bytes_gauge 62867410944

memory_free_bytes_gauge 1557377024

In the sample you can see:

▶ Operative metrics as memory, CPU or I/O usage.

▶ Business metrics including customers enrollment and completed courses (to be defined as KPIs
in each service).

WHEN TO USE IT

Business services needing monitorization to verify availability and correct function. As default, all
services would need to be monitored in production.

“What cannot be measured, cannot be optimized.” — Lord Kelvin.

4

Observability Patterns for Modern Applications

2.4 Status Page
A Status page allows operators and developers to
verify a service has everything needed to operate in
a healthy state.

In particular, the focus is on checking the external
dependencies of the service. Consider as external
dependency every resource out of control of the
application like:

▶ Environment configuration

▶ Databases availability and permissions

▶ File system availability, permissions, and free
space

▶ Queues

▶ Send Mail service availability

▶ Third-party services

HOW

The Status page will perform a series of health checks to verify:

▶ Environment configuration

▶ Correct settings and complete

▶ All compulsory parameters are passed

▶ All parameter passed are in the correct format (are valid)

▶ Databases

▶ Connection string is valid

▶ Can connect to database

▶ Schema version match the expected one

▶ Has permissions on DB to read/write as needed

▶ File System

▶ File System is accessible. Units are mounted (no timeouts).

5

Observability Patterns for Modern Applications

▶ Read/write permissions are correct

▶ File system schema version is expected: folder and files structure conform the expected
one

▶ Queues

▶ Queue exists

▶ Permissions are correct

▶ Send mail & third-party services

▶ Is possible to connect to the external service (ping or probe)

▶ Latency and connection times are under an acceptable threshold.

▶ Service Works (a query to service3/status is possible if implemented).

Samples: https://status.bitbucket.org, health-check of a home router.

WHEN TO USE IT

Business Services needing to be monitored for proper behavior (all services in production).

Critical in complex services with many dependencies. Many dependencies and distributed
systems, increases the chance of failure.

The Status page reduces a lot the time for diagnostic a failure caused by an external dependency.
Saves developer’s time chasing for ghosts when the root cause for the failure is external. Direct ROI
in terms of time and money saved in operation.

2.5 Health Endpoint
Quite similar to Status Page pattern, but oriented to machines rather than humans. It will return
JSON or XML and will be systematically monitored and collected on a fixed frequency.

Sample call:

curl https :// server :443/ health

Sample response:

200 OK

Content -Type: application/json

{

status: "Degraded",

6

https://status.bitbucket.org

Observability Patterns for Modern Applications

dependencies: [

{ name: "BD", status: "OK" },

{ name: "Queues", status: "OK" },

{ name: "Email", status: "FAIL", message: "No response"},

{ name: "GoogleMaps", status: "DEGRADED", message: "Latency greater

than 500ms" }

]

}

WHEN TO USE IT

When the number of services to track and monitor grows, it’s a good idea to centralize and automate
health-check collection in a standardized way. Dashboards and alert systems can be setup feed by
the data collected. It allows to respond quick and proactively to infrastructure failures or third-party
services (in some cases before users are affected).

Allows to verify and track SLAs and effective availability of third-party services.

2.6 Structured Log
Standard log format shared across all applications in the company. It allows to implement common
trace and correlation ids in the aggregated log.

HOW

Select and apply a format for structured log. Samples:

▶ Structured Login

▶ Serilog

▶ Stackify

WHEN TO USE IT

When orchestrating several services collaborating to resolve a single user request or when the number
of services grows.

7

https://kartar.net/2015/12/structured-logging/
https://serilog.net/
https://stackify.com/what-is-structured-logging-and-why-developers-need-it/

Observability Patterns for Modern Applications

2.7 Centralized Log
Centralizes traces and service logs to be aggregated in a central service. Allows to explore traces
and filter logs using standard log exploitation tooling. Traces (with correlation-id) and structured logs
allows to track individual requests crossing several services.

HOW

Aggregate logs [1] using services like Elastic-Search [4] or Splunk [11].

WHEN TO USE IT

Having a central log when the number of machines and nodes is greater than 5-8 is a key tool to
escalate production troubleshooting issues.

2.8 Application Instrumentation
Application Performance Monitoring tools (APM) instrument service code to measure via sampling
times and bottlenecks on CPU, memory usage, disk, IO, and time waiting for externals calls.

HOW

Using product like New Relic APM [10], Application Insight [5] or DataDog [8].

WHEN TO USE IT

Recommendable in production systems. Allows to discover real bottlenecks (not in theory ones) and
to plan accordingly to this information the next optimization to tackle.

8

Observability Patterns for Modern Applications

2.9 Configuration Management
Configuration Management is a disciple to control the configuration been passed to services in
environments. When the number of services (S), versions deployed (V) and environments (E)

grows, the complexity (C) of handling the correct configuration increases as (C = S × V × E).

HOW

▶ Keep configuration in code, versioned in source control. Separated by environment and version.

▶ Track changes to configuration. Use a repository for all Configuration Management (different
and independent from the service’s code).

▶ Verify configuration is correct using automation and/or service health-checks.

WHEN TO USE IT

When the number of services is greater than 5-7.

2.10 Central Configuration Management
As the number of services (or microservices) keeps growing, many of them have similar configuration.
Therefore, makes sense to centralize a source of configuration. Products like Consul [6] provides a
high-availability key/value store where service configuration can be persisted and served.

The inversion of control applied here configures in each service a well-known DNS name and a
port to reach the central configuration service. This service will provide the required configuration
based on the service requesting, version and current environment.

HOW

Use a product for Central Configuration Management like Consul [6]. Setup it in high-availability mode
as configuration is a critical data for services to start-up.

WHEN TO USE IT

When the number of services is greater than 12.

9

Observability Patterns for Modern Applications

2.11 Audited Configuration Management
In scenarios where security is a key concern like Banks, Public Administration, aerospace, or military
systems changes to Configuration Management must be tracked, reviewed, authorized and audited.

Changes to Configuration Managements can be done only by authorized principals and follow a
review process workflow before application.

Implement such Audit and Workflow capabilities if security requirements are meet.

HOW

▶ Secure the Configuration Management tool. Integrate it with a workflow process.

▶ A git repository with signatures could be a great option. Can use PR as review process.

▶ Consider Vault [7] or similar product for credential storage and secrets.

WHEN TO USE IT

Consider it when strong security requirements apply.

10

Observability Patterns for Modern Applications

References
[1] Stringfellow A. Log aggregation. https://stackify.com/log-aggregation-101. 8

[2] HAProxy authors. Haproxy. http://www.haproxy.org. 3

[3] Prometheus Authors. Prometheus. https://prometheus.io. 4

[4] Elastic Search B.V. Elastic search. https://www.elastic.co. 8

[5] Microsoft Corp. Application insights. https://docs.microsoft.com/en-us/azure/

azure-monitor/app/app-insights-overview. 8

[6] Hashi Corporation. Consul. https://www.consul.io. 3, 9

[7] Hashi Corporation. Vault. https://www.vaultproject.io. 10

[8] Datadog. Datadog. https://www.datadoghq.com. 8

[9] F5 Inc. Nginx. https://www.nginx.com. 3

[10] New Relic Inc. New relic apm. https://newrelic.com. 8

[11] Splunk Inc. Splunk. https://splunk.com. 8

[12] InfluxData. Influxbd. ww.influxdata.com. 4

[13] Graphana Labs. Graphana. https://grafana.com. 4

[14] Nagios Enterprises LLC. Nagios. https://www.nagios.com. 3

11

https://stackify.com/log-aggregation-101
http://www.haproxy.org
https://prometheus.io
https://www.elastic.co
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://www.consul.io
https://www.vaultproject.io
https://www.datadoghq.com
https://www.nginx.com
https://newrelic.com
https://splunk.com
ww.influxdata.com
https://grafana.com
https://www.nagios.com

If you liked this whitepaper:

Enroll into our newsletter for
future whitepapers &
techonology insight.

Feel free to forward this
whitepaper to anyone

interested in the topics covered.

Join the conversation & write
us at info@metadev.pro.

Metadev is the trademark by Metadev S.L., a company registered in Seville, Spain, EU.
https://metadev.pro

12

https://enroll.metadev.pro
mailto://info@metadev.pro
https://metadev.pro

	1 Goal
	2 Patterns & practices
	2.1 Visible Version
	2.2 Ping/Heartbeat Endpoint
	2.3 Metrics Endpoint
	2.4 Status Page
	2.5 Health Endpoint
	2.6 Structured Log
	2.7 Centralized Log
	2.8 Application Instrumentation
	2.9 Configuration Management
	2.10 Central Configuration Management
	2.11 Audited Configuration Management

	References

